The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes

نویسندگان

  • Alberto Elías-Villalobos
  • Alfonso Fernández-Álvarez
  • Ismael Moreno-Sánchez
  • Dominique Helmlinger
  • José I. Ibeas
  • Jörg Kämper
چکیده

Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone deacetylases: revealing the molecular base of dimorphism in pathogenic fungi

Fungi, as every living organism, interact with the external world and have to adapt to its fluctuations. For pathogenic fungi, such interaction involves adapting to the hostile environment of their host. Survival depends on the capacity of fungi to detect and respond to external stimuli, which is achieved through a tight and efficient genetic control. Chromatin modifications represent a well-kn...

متن کامل

Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response.

Mating of compatible haploid cells of Ustilago maydis is essential for infection and disease development in the host. For mating and subsequent filamentous growth and pathogenicity, the transcription factor, prf1 is necessary. Prf1 is in turn regulated by the cAMP and MAPK pathways and other regulators like rop1 and hap1. Here we describe the identification of another putative Prf1 regulator, m...

متن کامل

The induction of the mating program in the phytopathogen Ustilago maydis is controlled by a G1 cyclin.

Our understanding of how cell cycle regulation and virulence are coordinated during the induction of fungal pathogenesis is limited. In the maize smut fungus Ustilago maydis, pathogenesis and sexual development are intricately interconnected. Furthermore, the first step in the infection process is mating, and this is linked to the cell cycle. In this study, we have identified a new G1 cyclin ge...

متن کامل

The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein.

MAP kinases (mitogen-activated protein kinases) are activated by dual phosphorylation on specific threonine and specific tyrosine residues that are separated by a single residue, and the TXY activation motif is a hallmark of MAP kinases. In the fungus Ustilago maydis, which causes corn smut disease, the Crk1 protein, a kinase previously described to have roles in morphogenesis, carries a TXY mo...

متن کامل

Mutations in the myp1 gene of Ustilago maydis attenuate mycelial growth and virulence.

Mating between haploid, budding cells of the dimorphic fungus Ustilago maydis results in the formation of a dikaryotic, filamentous cell type. Mating compatibility is governed by two mating-type loci called a and b; transformation of genes from these loci (e.g. a1 and b1) into a haploid strain of different mating type (e.g. a2 b2) allows filamentous growth and establishes a pathogenic cell type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015